Course Type	Course Code	Name of Course	L	T	P	Credit
DP	NMEC506	Machining Lab	0	0	3	1.5

Course Objective

To provide practical knowledge on Machining Processes and their capabilities.

Learning Outcomes

Upon successful completion of this course, students will:

- Understand the working principle of various machining processes and corresponding machines and cutters.
- Be acquainted with the force, temperature, and vibration assessment methodology in machining.
- Be able to assess machinability for different workpiece materials under different environments.

Unit	Topics	Practical	Learning Outcome		
No.		hours			
1	Dissemination of the lab-specific information and visit to all lab spaces	3	General lab-specific information		
2	Re-manufacturing of HSS uncoated cutting tool having specified geometry using grinding	3	Hands-on-experience in tool grinding		
3	Real time force, temp, & vibration measurement & analysis in turning	3	Hands-on-experience on force, temp, & vibration in machining		
4	ML-driven force, temp, & vibration analysis in milling, drilling, and grinding	3	Hands-on-experience on ML application in machining		
5	Microstructure-level lamellar analysis of turning, milling, & drilling chips for different work samples	3	Hands-on-experience in polished chip observation		
6	Profilometry-based external surface texture analysis in turning, milling, & grinding based on ISO 25178	3	Hands-on-experience in surface 2D and 3D topography analysis		
7	Spur and helical gear cutting in milling machine through simple and differential indexing	. 3	Hands-on-experience in indexing mechanism and gear cutting		
8	Gear manufacturing through fast and productive processes: Gear Hobbing and Gear Shaping	3	Hands-on-experience in faster gear production processes		
9	Knurling-based micro-texturing on cylindrical and flat surfaces	3	Hands-on-experience in micro-texturing method and its analysis		
10	Sustainability assessment of dry, flood, and MQL lubrication in terms of force, temperature & quality	3	Hands-on-experience on sustainable lubricant supply		
11	Image processing-based tool wear inspection and development of data-driven tool life equation	3	Hands-on-experience on tool wear measurement		
12	Machinability and surface quality analysis in drilling of composite material	3	Hands-on-experience in machining of composites		
13	Compensation and/or re-experiment	3	Reserved date for compensation and re- experimentation		
14	Practice and review	3	Final evaluation		
	Total	42			

Text book:

- 1. Machining and Machine Tools by A. B. Chattopadhyay, Wiley
- 2. Metal Cutting: Theory and Practice by A. Bhattacharya, New Central Book Agency

Reference:

- 2. Manufacturing Engineering and Technology by S. Kalpakjian and Schmid, Pearson Education
- 3. Metal Cutting Theory and Practice by D. A. Stephenson and J. S. Agapiou, CRC Press